MOISTURE-RETAINING CAPACITY AND STRUCTURE
OF POROUS BODIES

V. M. Starov ' UDC 539.217.1+532.2

The moisture-retaining capacity p(w) of nonswelling porous bodies is explained from the
point of view of the statistical geometry of the pore space, and on the basis of the resulting
representation of p(w) it is shown that it is possible to obtain the distributions of pores with
respect to the radii and their derivative.

In soil physics, construction engineering, and related fields, one of the important characteristics of
_porous bodies is their ability to retain moisture when subjected to suction pressure [1]; however, up to the
present time we have no theoretical explanation of the results obtained in such experiments. An attempt to
find such an explanation is made in the present study on the basis of a previously developed statistical ap-
proach to the description of the structure of porous bodies and the equilibrium of liguid in them [2, 3].

The porous body is assumed to be nonswelling, homogeneous, and isotropic; the pores in it may inter-
sect arbitrarily and the variation of the pore radius along the pore axis is regarded as the realization of a~
stationary random process.

A porous body completely saturated with liquid is situated in the layer 0 = z < h; below this, at z < 0,
there is a fine-pore filter and liquid (Fig. 1). The filter is able to withstand negative pressure drops from
0 to pyy,, and therefore for suction pressures in the range 0 < p < py, the liquid level remains constant and
does not separate from the porous body. The variation of moisture content with pressure is known for the
filter; this makes it possible to plot the curves of moisture-retaining capacity from the porous bodies being
tested.

As the suction pressure increases, there is drainage of the liquid from the porous body. In [3] it is
shown that in the description of the equilibrium distributions of liquid in porous bodies which are achieved
in the drainage process, it is more convenient to operate with voids instead of filled pores.

We denote by wp(z) the equilibrium volumetric moisture content at level z for a suction pressure p
in the absence of evaporation. At level z =h the liquid can remain only in thoge pores in which p + pgh,
< 20cosf/r or v <a/p + pgh and consequently

@ =F (p +apgh)

or

up(h)=1—F( a ) )
p -~ pgh

where up(z) =1 —wp(z) is the probability of finding an empty pore at level z.

We shall assume to start with that the pores do not intersect. In the porous body we single out a thin
layer from z to z — dz. It is not difficult to show {2] that the increment up(z) in this layer has the form

- dup (2) = 7“1; (Z) dzup (Z), (2)
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z * where Ap(z)dz is the probability that r(z—dz) < R(z—dz) when r(z) > R(z),
_/7 i.e., )\p(z)dz = Plr(z—dz) < R(z—dz) r(z) > R(z)]. Calculations analogous to
7 those of [2] give us
0
EBNRRANRNAUARERNNASE] RO, (2
2 T : }“p(z)=ﬁw)_, (3)
T 1—F(R (@) :
f here Tp(z) = S {p(z) + r'l¢ (rHdr'. Thus, from (2) we obtain a first-order
i —u(2)
= = differential equation
§ du,, (2 '
_ - _—EPZ—L =—lk@Qu, () 4
1l with the boundary condition (1). It is obvious that branching of the pores
R _— ! leads to an increase in the number of empty pores and, consequently, in the
g = _] probability of finding them, up(z). Detailed consideration of the elementary
- - events taking place with empty pores in the layer (z, z—dz) shows [3] that
Eq. (4) becomes the more complicated equation
Fig. 1. Scheme of the du,, (2) o
experiment: 1) porous T4 —r, (Q)uy(2) + Ap (9 Py (@), (5)

body being tested; 2) fine-
pore filter; 3) liquid, p
= pgH.

Here Xp(z)dz is the probability of variation of the radius of the pore in the
layer

@ z—dz)fromr(z—d2)>R(z—d2) to r(?)<R(d,

Pp(z) is the probability that a void will be found in such a place. The functions Xp(z) and Pp(Z) may be cal-
culated by using a method analogous to that of [3]:

hp(0) =Bf(R@)I, @D —p@VF (R@E)>0,

h
Py () = exp {— [ (15 (&) +viB/3-(1 —F R @) w, (&)1 dy}

We define the average moisture content of the porous body, wh(p), as

h
o, (p) = —;;pr(y)dy- (6)
[1] .

The inverse relationship p = p{w)y, is usually called [1] the moisture-retaining capacity of the porous body.
The volume of the liquid V(p) which has flowed out of the porous body as the suction pressure varies from
Otopis

h
V (p) = mSh— mS 5‘ w, (4) dy = mSh[1 — w, (p)]
0
or wh(p) = 1-V(p)/mSh. Consequently the average moisture content is expressed in terms of V(p), which

can be measured experimentally.

Thus, we have shown that in order to explain the moisture-retaining capacity of a porous body it is
necessary and sufficient to know the distribution functions for the pores with respect to the radii and their
derivative; in addition, p = p(wy) will depend essentially on h, the thickness of the layer of the porous body.

We write L = 91/3, where { is the characteristic volume of the porous body, defined in [4]. Now sup-
pose that h < L; in this case we can neglect the approach of voids to level z from below, i.e., we can
neglect the term Pp(z) in Eq. (5). Thus, in the case h < L Eq. (4) is valid; solving it, we obtain

3
w, (@) = 1—[1—F R @)exp|{— {4, () dy} .

In this case we find from (6), to within terms of first order in h, that

486



W

a a\\ a\ apg 7)
oy = F L)+ ___*_r@@_f(_)_4(_)__h (
(7) (p) ﬁ]..p(.fl_) ) ) plr L
. p -
where I'(p) = I‘p(O).
From (7) we find that Bwh(p)/ah =K(p) is independent of h. Consequently
F (—‘;—) =, (p) — K(p)h. (8)
Hence .
a\__ P kn o=t (9)
f(\“p_)* g TR o= ,
Comparing (7) and (9), we find that
re) _ —9,eglp’+alp-K(p) M) (10)

Since wp(z) = w(p + 0gz), it follows that dwp(z)/dp = pg dwp(z)/dz < 0; from this and (6) it follows that wp
< 0, and therefore M(p) > 0. If is easy to verify that

; '2a a
rp = — ;gﬁ~¢ﬁ“ﬁ§ﬂ’

or, from (10)

z_¢Qmﬂ§)=—Jiwmm=mm
: P 2a0g

Making use of the fact that ¢(r') = ¢(—r'), we finally obtain
q
¢(J§J=me
p

Thus, measuring the moisture-retaining capacity of 4 porous body for two values h and h; such that
h-h; < h and h < L, we can obtain the distributions of pores with respect to the radii and their derivative.

Ithas usually been assumed that for a description of the structure of a pore space it is sufficient to
know the distribution of the pores with respect to the radii; as has been shown earlier [2, 3] and in the pre-
sent study, the distribution of pores with respect to the rate of variation of the radii plays an equally im-
portant role. This recalls the situation in radio engineering in which the signals are characterized not only
by the distribution with respect to amplitude but also by the distribution with respect to frequencies.

NOTATION
r{z) is the radius of capillary at level z;
a is the surface tension;
9 is the boundary angle;
P is the dengity of liquid;
F(r) is the pore distribution function with respect to radii;
B is the tortuosity of the pores;
g is the acceleration of gravity;
m is the porosity;
s is the surface area of the perous body;
a = 20cos6; &(r") is the pore distribution function with respect to the derivative of the radius;
/v, is the average distance between branchings of pores;

@lr!) =&'(r"); £(r) =F'(r); R(z) =a/(p+pgz); u(z) =apg/(p+pge)?.
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